Simulation of FEL pulse length calculation with THz streaking method

نویسندگان

  • I. Gorgisyan
  • R. Ischebeck
  • E. Prat
  • S. Reiche
  • L. Rivkin
  • P. Juranić
چکیده

Having accurate and comprehensive photon diagnostics for the X-ray pulses delivered by free-electron laser (FEL) facilities is of utmost importance. Along with various parameters of the photon beam (such as photon energy, beam intensity, etc.), the pulse length measurements are particularly useful both for the machine operators to measure the beam parameters and monitor the stability of the machine performance, and for the users carrying out pump-probe experiments at such facilities to better understand their measurement results. One of the most promising pulse length measurement techniques used for photon diagnostics is the THz streak camera which is capable of simultaneously measuring the lengths of the photon pulses and their arrival times with respect to the pump laser. This work presents simulations of a THz streak camera performance. The simulation procedure utilizes FEL pulses with two different photon energies in hard and soft X-ray regions, respectively. It recreates the energy spectra of the photoelectrons produced by the photon pulses and streaks them by a single-cycle THz pulse. Following the pulse-retrieval procedure of the THz streak camera, the lengths were calculated from the streaked spectra. To validate the pulse length calculation procedure, the precision and the accuracy of the method were estimated for streaking configuration corresponding to previously performed experiments. The obtained results show that for the discussed setup the method is capable of measuring FEL pulses with about a femtosecond accuracy and precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Femtosecond pulse length and arrival time measurement of hard X-Ray FELs

The ultra-bright short-pulsed radiation provided by the free electron lasers (FEL) is used for many new discoveries in different fields of science and industry. The advancement of the FEL technologies allows the generation of shorter photon pulses with higher photon energies or shorter radiation wavelengths that open new horizons for the new research. In order to better understand the measureme...

متن کامل

FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking

The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the X...

متن کامل

Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range

A comprehensive analysis is presented that describes amplification of a seed THz pulse in a single-pass free-electron laser (FEL) driven by a photoinjector. The dynamics of the radiation pulse and the modulated electron beam are modeled using the time-dependent FEL code, GENESIS 1.3. A 10-ps (FWHM) electron beam with a peak current of 50–100 A allows amplification of a 1 kW seed pulse in the fr...

متن کامل

High-gain Seeded Fel Amplifier Tunable in the Terahertz Range

The lack of a high-power, relatively low-cost and compact terahertz (THz) source in the range 0.3-3x10 Hz is the major obstacle in progressing on biomedical and material studies at these wavelengths. A high-gain, single pass seeded FEL technique allows to obtain high power THz pulses of a high spectral brightness. We describe an ongoing project at the Neptune laboratory where a ~ 1kW seed pulse...

متن کامل

Study of partial-waveguide rf-linac FELs for intense THz-pulse generation

In this paper, we present a time-domain analysis of a short pulse partial-waveguide FEL oscillator employing toroidal mirrors and a hole outcoupling. The use of toroidal mirrors with optimized radius of curvatures helps to reduce cavity losses arising from the mismatch of the free space propagating optical field into a waveguided one. We introduce semi-analytical expressions for the calculation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016